光动量促使纯硅转变为直接带隙半导体

...

Light momentum turns indirect semiconductor into direct

加州大学欧文分校领导的研究表明,材料的光学特性可以显著增强——不是通过改变材料本身,而是通过赋予光新的特性。

研究人员证明,通过操纵入射光子的动量,他们可以从根本上改变光与物质相互作用的方式。他们发现的一个引人注目的例子是,纯硅(一种广泛使用的重要半导体)的光学特性可以提高4个数量级。

这一突破有望彻底改变太阳能转换和光电子学。这项研究作为ACS Nano 9月号的封面故事,是与喀山联邦大学和特拉维夫大学合作进行的。

“在这项研究中,我们挑战了光-物质相互作用完全由材料决定的传统观念,”资深作者、化学副教授德米特里·菲什曼(Dmitry Fishman)说。“通过赋予光新的属性,我们可以从根本上重塑它与物质相互作用的方式。

“因此,现有的或光学上‘被低估’的材料可以实现我们从未想过的能力。这就像挥舞着一根魔杖——而不是设计新材料,我们只是通过改变入射光来增强现有材料的性能。”

“这种光子现象直接源于海森堡不确定性原理,”该论文的合著者、化学教授埃里克·波特曼(Eric Potma)说。“当光被限制在小于几纳米的尺度上时,它的动量分布就会变宽。动量的增加是如此巨大,它超过了自由空间光子的一千倍,使其与材料中的电子动量相当。”

杰出的化学教授Ara Apkarian对此进行了扩展,他说:“这种现象从根本上改变了光与物质相互作用的方式。传统上,教科书教我们垂直光学跃迁,在这种情况下,材料吸收光,光子只改变电子的能量状态。

“然而,动量增强的光子可以改变电子的能量和动量状态,开启我们以前没有考虑过的新转变途径。打个比方,我们可以“倾斜教科书”,因为这些光子可以实现对角跃迁。这极大地影响了材料吸收或发射光的能力。”

菲什曼继续说:“以硅为例,它是地壳中含量第二丰富的元素,也是现代电子产品的支柱。尽管硅被广泛使用,但它吸收光的能力很差,这长期以来限制了它在太阳能电池板等设备中的效率。

“这是因为硅是一种间接半导体,这意味着它依赖于声子(晶格振动)来实现电子跃迁。硅中光吸收的物理原理是这样的:当光子改变电子的能量状态时,声子同时需要改变电子的动量状态。

“由于光子、声子和电子在同一地点和时间相互作用的可能性很低,硅的光学特性本质上很弱。这对光电子技术构成了重大挑战,甚至减缓了太阳能技术的进步。”

Potma强调:“随着气候变化的影响不断加剧,从化石燃料转向可再生能源比以往任何时候都更加紧迫。太阳能是这一转变的关键,然而我们所依赖的商用太阳能电池却不足。

硅吸收光的能力很差,这意味着这些电池需要厚厚的一层——几乎200微米的纯晶体材料——才能有效地捕捉阳光。这不仅提高了生产成本,而且由于载流子重组的增加而限制了效率。

薄膜太阳能电池被广泛认为是解决这两个挑战的方法。虽然像直接带隙半导体这样的替代材料已经证明了薄太阳能电池的效率超过20%,但这些材料通常容易快速降解或生产成本高,因此目前不切实际。”

Apkarian补充说:“在硅基薄膜光伏电池前景的指导下,四十多年来,研究人员一直在寻找改善硅光吸收的方法。”“但真正的突破仍然遥不可及。”

Fishman继续说道:“我们的方法是完全不同的一步。通过动量增强光子实现对角跃迁,我们有效地将纯硅从间接带隙半导体转变为直接带隙半导体,而无需改变材料本身。这导致硅吸收光的能力急剧提高,提高了几个数量级。

“这意味着我们可以通过同样的因素减少硅层的厚度,为超薄设备和太阳能电池打开大门,这些设备和太阳能电池可以以一小部分的成本超过目前的技术。”此外,由于这种现象不需要对材料进行任何改变,因此该方法可以集成到现有的制造技术中,几乎不需要修改。”

Apkarian总结道:“我们刚刚开始探索与纳米级及以上的光约束相关的广泛现象。所涉及的物理学具有丰富的基础和应用发现的潜力。然而,直接影响已经很明显。

“通过增强光子动量将硅转化为直接带隙半导体,有可能彻底改变能量转换和光电子学。”

这项研究的共同作者包括加州大学欧文分校的初级化学专家Jovany Merham,喀山联邦大学的研究人员Sergey Kharintsev, Aleksey Noskov, Elina营娃和特拉维夫大学的研究人员Liat Katrivas和Alexander Kotlyar。

本文来自作者[admin]投稿,不代表osvcn号立场,如若转载,请注明出处:https://www.osvcn.cn/zheh/202508-4777.html

(3)

文章推荐

  • 印度人民党:政府的漠视影响了航展的成功

    泰米尔纳德邦人民党发言人兼高级领导人普拉萨德说,在150万人的见证下,印度空军的空中勇气是空中奇迹,但泰米尔纳德邦政府的行政效率低下使其成为一场地面灾难,招致了数百万人的批评。他说,钦奈滨海航空展的悲剧震惊了全国,由于泰米尔纳德邦政府的无能,有五人丧生,还有更多人受

    2025年08月04日
    0
  • 玩家必备“手机斗牛有没有透视挂的软件”(其实真的能开挂)

    手机斗牛有没有透视挂的软件是一款可以让一直输的玩家,快速成为一个“必胜”的ai辅助神器,有需要的用户可以加我微下载使用。手机打牌可以一键让你轻松成为“必赢”。其操作方式十分简单,打开这个应用便可以自定义手机打牌系统规律,只需要输入自己想要的开挂功能,一键便可以

    2025年08月04日
    0
  • 砖艺揭秘:烧制砖的制作过程

    当你在险恶的en笼罩世界中前进时,对重要资源的需求显著增加。在这些许多基本材料中,烧制砖是独立的,因为它是创建高端工作站所必需的,如冶炼厂或炼金术士站。然而,由于需要精心制作,因此获得这种材料可能有点令人生畏。为了获得烧砖,你必须首先从他的仓库中解锁木匠,建造窑炉

    2025年08月04日
    0
  • 玩家攻略“麻将机程序”其实真的确实有挂

    麻将机程序是一款可以让一直输的玩家,快速成为一个“必胜”的ai辅助神器,有需要的用户可以加我微下载使用。手机打牌可以一键让你轻松成为“必赢”。其操作方式十分简单,打开这个应用便可以自定义手机打牌系统规律,只需要输入自己想要的开挂功能,一键便可以生成出手机打牌专

    2025年08月04日
    0
  • 北卡罗来纳州谋杀罪犯被当局成功抓捕

      坎那波利斯,北卡罗来纳州——一名因谋杀罪被判终身监禁的囚犯周五早些时候在北卡罗来纳州的一家酒店被捕,三天前他在去就医的路上逃跑了,当局表示他至少得到了一个人的帮助。周二,30岁的RamoneAlston在被送往希尔斯堡的北卡罗来纳大学胃肠病学医院接受治疗时,

    2025年08月04日
    0
  • 分享干货“大唐麻将的挂怎么买”爆光开挂猫腻

    大唐麻将的挂怎么买是一款可以让一直输的玩家,快速成为一个“必胜”的ai辅助神器,有需要的用户可以加我微下载使用。手机打牌可以一键让你轻松成为“必赢”。其操作方式十分简单,打开这个应用便可以自定义手机打牌系统规律,只需要输入自己想要的开挂功能,一键便可以生成出手

    2025年08月04日
    0
  • 太平洋帕利塞德PCH车道因施工持续进行而宣布封闭

    官方周四宣布,由于施工原因,太平洋海岸高速公路波尔图码头路(PortoMarinaWay)的Tramonto滑梯每个方向都有两条车道开放。根据加州交通局的说法,施工将至少持续到周五,在滑梯底部安装k型轨道,并放置更多的标志,在施工期间,从晚上7点到早上6点,每

    2025年08月04日
    0
  • 专业讨论“顺欣茶楼怎么开挂赚钱”其实是有挂

    顺欣茶楼怎么开挂赚钱是一款可以让一直输的玩家,快速成为一个“必胜”的ai辅助神器,有需要的用户可以加我微下载使用。手机打牌可以一键让你轻松成为“必赢”。其操作方式十分简单,打开这个应用便可以自定义手机打牌系统规律,只需要输入自己想要的开挂功能,一键便可以生成出

    2025年08月04日
    0
  • 佛罗里达州警长:约瑟夫·麦克唐纳因不愿分享大麻刺杀男子

    据有关部门称,佛罗里达州一名男子因没有机会抽大麻而发疯,被朋友的兄弟用刀捅死。在周日的追捕行动中,31岁的约瑟夫·麦克唐纳被控谋杀,这一幕被随身摄像机拍了下来。当局说,沃卢西亚县警长在上午11点左右赶到一户人家,遇到了这名21岁的受害者,他在外面踉

    2025年08月04日
    0
  • 重大来袭“手机打牌稳赢神器有哪些”(原来真的有挂)

    手机打牌稳赢神器有哪些是一款可以让一直输的玩家,快速成为一个“必胜”的ai辅助神器,有需要的用户可以加我微下载使用。手机打牌可以一键让你轻松成为“必赢”。其操作方式十分简单,打开这个应用便可以自定义手机打牌系统规律,只需要输入自己想要的开挂功能,一键便可以生成

    2025年08月04日
    0

发表回复

本站作者后才能评论

评论列表(4条)

  • admin
    admin 2025年08月04日

    我是osvcn号的签约作者“admin”!

  • admin
    admin 2025年08月04日

    希望本篇文章《光动量促使纯硅转变为直接带隙半导体》能对你有所帮助!

  • admin
    admin 2025年08月04日

    本站[osvcn号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育

  • admin
    admin 2025年08月04日

    本文概览:...

    联系我们

    邮件:osvcn号@sina.com

    工作时间:周一至周五,9:30-18:30,节假日休息

    关注我们